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TEARING INSTABILITY IN AN ANISOTROPIC NEUTRAL SHEET

I. INTRODUCTION

In this paper, we investigate the tearing-mode stability properties of
a field-reversed plasma layer whose temperature distribution is anisotropic
(Tl # T"). The symbols | and | refer to directions perpendicular and
parallel to the equilibrium magnetic field, respectively. Figure 1l shows a
schematic drawing of the geometry and the coordinate system. The equili-
brium magnetic field Eo(z) = B:(z)£, indicated by thi solid 1lines, is
generated self-consistently by the current go(z) = Jo(z)l, with no external
magnetic field. The magnetic field reverses its direction in the plane
z = 0 and Jo(z) is symmetric in z. Both ions and electrons are assumed to
contribute to the equilibrium current. The number density n (z) is also
shown in the figure. In this one-dimensional equilibrium, all physical
quantities depend on 2z alone. The plasma is assumed to consist of
collisionless ions and electrons so that Vlasov equations are used for both
species.

It 1is well~-known that inertia of the current carriers can lead to
collisionless tearing instability in a system such as the one described
above. Considerable work has been done on the basic collisionless tearing-

mode properties of the neutral sheet configurationl-s.

An example of
physical systems that may be modelled by this configuration is the earth’s
magnetotailg. Subsequent to the early work, tearing-mode results have been
considered in connection with the magnetotaillo’ll. In these studies, the
neutral sheets are generally assumed to have isotropic temperature
distributions (Tl = T'). However, in a collisionless plasma, the motion of
particles parallel to the magnetic field 1is decoupled from the
perpendicular motion and temperature anisotropy can be maintained even in

thermal equilibrium. Laval and Pellat12

used an energy principle analysis
to show that collisionless tearing-mode properties can be strongly modified
by weak temperature anisotropy. In particular, it was found that the

k1 Eo mode can be stabilized by a very small degree of electron
temperature anisotropy: TeL/Teu < (l-aels) where a, 1is the electron
gyroradius and § is the layer half~-thickness. In this work, neither the
dispersion relation nor the marginal condition for the anisotropic case was

13

glven. Recently, Chen and Davidson carried out a Vlasov-fluid analysis

of a field-reversed ion layer at marginal stability using approximate
Manuscript approved July 14, 1983.




Fig. 1

Y

Schematic drawing of a neutral sheet and the coordinate system.

The magnetic field B (z) reverses direction at z = 0. The dashed

lines indicate the magnetic field configuration including the

perturbation.
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orbits in a cylindrical coordinate system. It was found that relatively
small temperature anisotropy in ions significantly modified the stability
boundaries. Consistent with the results of Ref. 12, the range of unstable
wavenumbers 1is reduced for TillTén < 1 and is increased for TiL/TiI > 1.
More recently, Basu and Coppi1 studied a fluid-like "field swelling”
instability in an anisotropic plasma in which the magnetic pressure is
comparable to the particle pressure and in which there is no equilibrium
current. This analysis is local and is based on the fluid equations.
However, in the neutral sheet configuration, the 1instability is
intrinsically nonlocal and the plasma g is much greater than unity in the
field-null region so that the fluid equations are invalid. Thus, the
treatment of Ref. 14 is not applicable to the tearing-mode instability
which 1s due to resonant particles crossing the field-null region.

A difficulty in treating " the neutral sheet configuration 1is the
complicated particle orbitsls. In order to make the problem tractable
analytically, "straight-line" approximations have often been used8’10 for
the particle orbits crossing the null plane. Numerically, the problem is
also difficult. In a noteworthy but rarely referenced work, Holdren16
utilized an integrodifferential equation formalism to show the feasibility
to treat the various orbits exactly. In order to minimize the numerical
errors, relativistic electrons with large orbits were wused and no
definitive comparison can be made betweer: the relativistic numerical
results and the previous nonrelativistic, approximate resultss. In
addition, the numerics required are prohibitive and it is in general

difficult to use this method.

In the present model, we will adopt the straight-line orbits but
improve the treatment of the ion orbits. The effects of the small Larmor
radius orbits will also be considered. The anisotropic collisionless
tearing-mode analysis is carried out for perturbations of the form
¥(x,z,t) = ;(z)exp(ikx-imt) where the wavevector k is taken to be parallel
to the equilibrium magnetic field. 1In Fig. 1, the dashed lines indicate
schematically the magnetic field 1lines 1including the mirror-like
perturbation given above. As a general remark, the problem treated here is
different from that of tearing instabilities in tokamak discharges18
because the tokamak geometry would have an applied magnetic field in the y-
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direction (Fig. 1). This alters the prticle orbits significantly. The

configuration studied here is more closely related to certain 6-pinches and

ion layers.

In Section II, we present the basic 1linear analysis of the
perturbation. In Section II1I, simplified particle orbits are used to
obtain the eigenvalue equation. This equation is solved to give the linear

anisotropic dispersion relation. Section IV discusses the results.

II. FORMULATION

Figure 1 shows a schematic drawing of a neutral sheet. We assume that
there 1s no equilibrium electrostatic field and no bulk motion of the
plasma (i.e., E x B = 0). We consider a class of equilibria described by

foj = foj((ﬂlj - vjpyj’ Hnj) where j = e,{ and (H Hnj) are the

| 4
13* y3’
single-particle constants of the motion in the equilibrium magnetic
N - 2 4 2 P = + 0
field. Here, Hlj (mj/c,Z)(vy vz), yj = ®yVy (qj/c)Ay(z) .
H'j = (mj/2)v§ and Ay(z) is the vector potential for the equilibrium
magnetic field, where 9 is the electric charge, m is the mass, and Vj =

constant is the mean drift velocity of the species j.
A. Linear Eigenvalue Equation

The analysis is carried out for perturbations of the form y(x,z,t) =
&(z)exp(ikx-imt) where the wavevector k = kR is parallel to the equilibrium
magnetic field. The magnetic field configuration including this
perturbation is indicated by dashed lines in Fig. 1. The characteristic
where @

i ci
frequency in the asymptotic magnetic field Bo

frequency is low with luwl <K W, = eBy/m,c is the ion cyclotron

)
Bx(z = w), Moreover, we

consider the case where kve v Wy which 18 true for a wide range of

parameters of interest so that we also have typically lw|l <K kve, where v,

is the electron thermal velocity. This will be verified a posteriori.

Using the standard method of characteristics, the first-order Vlasov

distribution function for each species 1is

t

s—S. e l d .._a_-
f13 - de (E, + - v° xB)) T £ (1)
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where (x°, v°) represents the particle orbits in the equilibrium field with

the conditions _:5’(t' =t) =x, v'(t” = t) =V and y(t + =») = O for all
The time integration is carried out along the

—

perturbation quantities.

unperturbed orbits. In the above equation and in the remainder of the

paper, the species index j = e,1 is suppressed where no confusion arises.

The perturbed fields are given by

B, '1"_’11 ’ (2) |
9A £
1 -1 .
! = -Pp - = — g
| R * ¢
f s
! d
3 ¥xB ’:—“il , (4)
and f

Y« E = bnoy, (5)

where A, and ¢ are the perturbed vector and scalar potentials. In this
paper, we choose the Coulonb gauge (1 . ;Ao = 0). Because the

characteristic frequency of the perturbation 1is low, @ << w.y» We assume
!

charge neutrality to first order. Note that Bly(x,z,t) = 0 for the mirror-

like perturbations so that J; = le(x,z,t)z and Ay = q;(x,z,t)_;_.

For the general form fo = fo (Hl - Vij, H“), note that

of ~ of of of -
o o o o
—3l = m(v - Vy) a“l + m aH“ 3“1) v_X. ,

Using Eqs. (2) and (3) in Eq. (1), straightforward calculation yields

of of of

[¢] 0 2]
flj = qi ﬁf: [(¢ - qu;) + iny] - ikqi(ﬁ-l- - -a'lw)vxsy, (6)

vwhere Sy is the orbit integral along the unperturbed orbits given by

t
- c(p =Ly
s, = [ at“(e - < vow) N

T L A dte e e e o - cana s T S e . WGP B Y 4l BRGNS .
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is the uniform mean drift velocity normalized to the speed of 1light ¢

Here, use has been made of 3/3t » -iw and 3/3x » ik. For the isotropic
case, the last term in Eq. (6) vanishes and we trivially recover the
previous resultss. For the anisotropic case, estimating v, by the typical
thermal velocity Ven» We note that the ratio of the second term to the
third term is of the order of m/(kvth) which makes the last term in Eq. (6)
small in comparison with the first two terms for low frequency
perturbations except for a very small degree of anisotropy. This means

13 and the growth rate can be significantly modified

that the marginal state
in comparison with the isotropic case. It is the purpose of this paper to

give a quantitative illustration of this point.

oy

Another consequence of the low-frequency nature of the perturbation is
that the perturbed scalar potential ¢ is much smaller than (vy/c)w8 . This
can be seen by noting that the electric field E;, along the magnetic field

e T

is at most comparable to the components perpendicular to the magnetic

field, say, Ely' That is to say, E; s Ely' This implies

v
0 ¢ ) (v
For the low frequency case (w << kvth), ¢ is much less than (vy/c)w where
Vg ~ Ven for the typical thermal particle. Physically, this is simply a
statement of quasi-neutrality at low frequencies. Although it 1is
theoretically straightforward to include ¢, we will adopt the
simplification of neglecting ¢ in comparison with (vy/c)w . Then, the

approximate perturbed distribution function is

Y Y:
[o] o] [o] [o]
£19 = 798 ) L T Sy ““‘{aul aul)"xsy’ (8)

where the orbit integral [Eq. (7)) has been simplified to

1 t
§ = == dat°v’y. 9
y "o Ly @

The firr- term in %q. (8) is the usual adiabatic term which does not depend

on the ..o le. particle orbits. The second term represents the change in

6




momentum and the third term represents the change 1in energy of the
particles. In particular, iquy is the time-integrated Lorentz force

acting on the particles in the x—~direction.
B. Anisotropic Plasma Layer in Thermal Equilibrium

In the preceding section, we have described the general theoretical
framework appropriate for equilibria of the type foj(Hi - Vij,H"). To
examine the stability properties in detail, we specialize to the case where
the plasma layer consists of two species (electrons and ions), both

satisfying the two—temperature Maxwellian distribution given by

~

= ©° _ 1 _ _ 1
foy = T m, N exp| T, (13 ViPy i) lexp( T i) (0
(K]
= = o} -
where Hlj (mj/Z)(v§ + vg), Pyj mvs + (qj/c)Ay(z), Hnj (mj/z)vi’

Vj = constant is the mean velocity of the species j, and Ag(z) is the
vector potential for the equilibrium magnetic field. As stated before, the

electrostatic field is taken to be zero in the frame of the layer.

The equilibrium particle density and magnetic field profiles

corresponding to Eq. (10) depend only on the perpendicular temperature and

are well-known17

no(z) = ;o sech2 (%J, (11)
and
2¢T /6
B (2) = e—(T/"iL-—v_) tanh (%), (12)
e

where § is the characteristic half-thickness of the plasma layer given by

2
- T1)1/2 1 (13
) VY
[o]

[~
1]

L T1l + Tel’ and n, is the maximum number density at z = 0 for

both species. For z + », we have Bz(z + ») = Bo with

Here, T

B, = /81m°Tl R (14)




where B > 0 is chosen without loss of generality. This choice implies
(Vi-Ve) > 0 so that the total current is in the +y-direction, given by

3 (2) = e(V,Y )n_(2)y. (15)

Because of charge neutrality, the equilibrium ion and electron densities
are equal. It is easy to show that the zero electrostatic field condition

is equivalent to

Tilve + Telvi = 0. (16)

If we denote the gyroradius of the thermal particles by
jL S /2le7mj and W
Eq. (14), then it is easy to show by using Eqs. (13) and (16) that

ay = vjl/wcj where v = eBO/mjc with B, given by

S .3 an
§ le
and
q.V
i 2
= —, (18)
chl Boa

As a general remark, the equilibrium configuration described above is
obtained by balancing the Lorentz force c-l(g0 X Eo) with the perpendicular

pressure gradient -(3/32)[n°(z)Tl].

III. Stability Properties for an Anisotropic Neutral Sheet
A. Model Orbits

In order to determine the stability properties of the system described
by Eqs. (10)-(18), the orbit integral Sy [Eqs (9)] must be evaluated.
Generally, the orbits in the equilibrium field are complicted.15 In the
previous calculations on the isotropic neutral sheets, "straight-line"
orbit38’10 have been used to evaluate the orbit integral. In these
approximations, the neutral sheet is divided into two reglons. In the

inner region, |zl ¢ dj ~ ajs where the magnetic field is weak, the orbits

8




are taken to be straight lines across the null-plane (z = 0) and reflected

from the surfaces at |z| = dj. Thus, vy is nearly constant in this
region. In addition, the perturbed vector potentrial y = Aly is assumed
to be constant in the inner region (constant-y approximation). In the
outer region, |zl Z d,, the particles are assumed to execute nonaxis-—
crossing small Larmor radius orbits and these orbits are neglected. In
particular, in Ref. 8, the dispersion relation is obtained by matching the
inner and outer solutions at z = /7;;3. This approximation neglects the
axis-crossing ion orbits that extend far beyond the electron inner region
since dilde ~ (milme)l/b. Although the effects of the axis-crossing
electrons are greater than those of the axis-crossing ions, the ion effects
dominate in the intermediate region d, < lzl € d;, as will be shown in this
section. In the isotropic case, it will turn out that the neglect of the
intermediate region does not change the dispersion relation
substantially. However, in the anisotropic case, the ion orbits in the
intermediate region affects the dispersion relation significantly. In the
present analysis, we include the three regions (Fig. 2) and define the

boundary surfaces at

d =v/2a § (19)
for the electrons and

di = Jaié 2 (20)

for the ions, where ay = v /wc is the Larmor radius of a thermal particle

jL el
with vjl = /2le7 j° Physically, d, is the distance where the local

e
electron Larmor radius ag(dy) = /wce(de) is equal to dg/2.

v
el
Here, wce(de) - eB:(de)/mec. di is the distance where the 1local ion
Larmor radius a;(dy) = villmci(di) is equal to d;. The factor of /2 is
somewhat arbitrary and 1is chosen to avoid overestimating the large {on
orbits. Moreover, this choice allows the use of the constant-

¥ approximation in the region |z|/6 ¢ d1/6 <K 1.

The orbit integral Sy [Eq. (9)] will now be evaluated for the three
regions as shown in Fig. 2. In the respective inner region for each

specles, the orbits consists of nearly straight segmentss'lo and vy is

9
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Fig. 2 Schematic drawing of electron and ion orbits.




Then, from Eq. (9), the approximate orbit integral is

nearly constant.
i -1 -1
Syn = ic vy w(x,z,t)(kvx-w) ’ | (21)

is an exact constant of the motion and the constant-¢ approxi-
Using Eq. (21) in the first velocity moment of flj’

where Ve

mation has been used.
we obtain the perturbation current densities for the inner regions (region

I for electrons and regions I and 11 for ions),

st el el Ul %5— 1)2(ge—)
- ai(%-:—;‘i' 1)w(k‘“"“)]no(z)¢ ,. (22)
and
in c 2 el W 1 §2 w
Jle = 4 52 Tl [1 + (kvel)(f';g + I)Z[kvel)
- o, %.iz-+ l)w(k“"’e']]no(z)q; . (23)
e

where the anisotropy parameter is defined by
T

=1 - Y

]

a (24)
3 Ty

The dispersion function is given by

Z(E)_:_.l_—- fdxﬂz(:(.z_).

/n = x - ¢

and

W(E) = - 5 2°(E).

In deriving Eqs. (22) and (23), use has been made of the equilibrium
properties, Eqs. (13), (14), (16) and (18), and Vi = /ijl7mj.

In the outer regions, regions II and III for electrons and region III

for fions, the particles mainly execute VB drift motion with the drift

L




velocity Xg given by
2
mcv
k I U -2,z
Y% ¥ 738, 8 sinh (3}, (25)

where vi z v% + V§ is a constant of the motion. This expression is a good
approximation for the guiding center motion in the outer regions for most
particles (aj << §) except for the ones with kinetic energy much greater

than the thermal energy. Note that, for thermal particles (v‘L = vjl)’

j -2 J
VD/ij is of the order of (aj/G) sinh “(z/8) so that VD/v1l is of order

unity near z = dj. The actual motion of a particle is then

Syl 4y
vy VD v cos(wcjt + )
and
v, =V sin(wcjt + 1),
where w ., is the local cyclotron frequency, v is the gyration velocity in

cj

the V, frame and A is the phase angle. Then, the approximate orbit
integral Sy for the outer regions is

out -1.3 -1 -1t

Sy = ic VD(kvx—m) p-¢c v {wdt’cos(mcjt‘ + Ay
The second term represents the oscillatory motion in the guiding center
frame. Taking the phase average over A for the low frequency perturbation,

it is easy to see that the second term averages to zero and we have

s;“‘ . 1c-lvg(kvx-m)-1w(x,z,t) . (26)

Integrating over the velocity space and after some algebra, we obtain

jout _ ¢ 2Til [ - w Z(m/kvil)

kv

11 4rn_8? T 11" sinh2(z/8)

Rt i vy st )




o uni= Laog o

W(w/kvin)
+ o) ————— ]n _(2)y, (27)
sinh2(z/8) °
and
jout . _¢ 2Tel [1 - ( W Z(“’/kvel)
le 4n;°62 Tl kve' sinh2(z/6)
W(m/kvel)
+ o — ]“o(z)\l*- (28)
sinh2(z/§)

In obtaining these expressions, use has been made of the equilibrium

relationships Eqs. (17) and (18), and a§/62 << 1 has been dropped.

The third term in the square brackets of each equation 1is the
aunisotropy term. In Ref. 8, where the isotropic case is treated, the
second term in each equation is neglected by using the ordering
(w/kvju) ~ (aj/tS)3/2 ¢{ 1 and the ion contribution Ji? is neglected 1in
region II. Galeev and Zelenyi19 estimated the drift velocity by Vg [Eq.
(25)) without the factor sinh-z(zls) and concluded that this contribution
is small. However, as the discussion following Eq. (25) shows, this term
can be of order unity in Eqs. (27) and (38) near z = d,- Moreover,
Dobrowolny8 and Galeev and Zeleny119 matched the interior (lz| < d.) and

exterior (lz| > dy) solutions at z = d, by arguing that the interior

electron contribution to the perturbed cu:rent density {[Eq. (23)] is much
greater than the external ion contribution [Eq. (27)] for |zl > d,. This
argument overlooks the fact that the axis-crossing ion orbits extend far
beyond the electron inner region (lz| = de) so that the relevant comparison
in the intermediate region (region 11) is between the exterior electrouns
{Eq. (28)] and interior ions [Eq. (22)]. For the case in which ifons and
electrons are both anisotropic, the ratio Ji:/Jg:t at z = d, in region II
is approximately (“1/“e)(me/mi)(6/8e) which 1is typicallty of order
unity. For the case in which only ions are anisotropic (ae = 0), the
ratio 1s approximately a{(6/ae)5/2(melmi) which 1is much greater than
unity. As 2z increases to dy» the ratio increases because of the factor

sinh-z(;) in the electron contribution. Thus, in general, the ion
contribution is not negligible {in the intermediate region. Moreover, this

intermediate region is wider than the electron inner region by a factor of

18
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1/4 1/4
dilde (Til/T L) (mi/me) /2. For comparable Til and Tel’ this

quantity i{s roughly 4. The intermediate region is in turn thinner than the
sheet thickness § by a factor of /31/26 << 1. 1In this paper, we treat the

three-region matching problem (see Fig. 2); in region I, the total current
in out

in in
= . = + .
density is JlT (Jli + Jle) ; in rﬁij:n Ii;nflT (Jli Jle ) s in region
[I[, the current density is J1T = (Jli + JIe ) .

B. Linear Dispersion Relation

The linear eigenvalue equation is obtained by substituting Eqs. (22),
(23), (27) and (28) into Eq. (4) according to the three-region scheme
described in the preceding section. The equation is then solved subject to
the following conditiouns. The solution y must be such that its first
derivative (3y/3z) vanishes asymptotically (lz| + =) and that the

logarithmic derivative 1is contfouous at |z| = d, and |zl = d;. For the

inner region (I), the eigenvalue equation is found to be

2y -~
) (29)
dz2

where P(x,z,t) = ;(z) exp(ikx-iyt) and

T
2 =2 11 (1 62 w__ ST
1 a% iy iw in
Ter 1 42
el w w ©
+‘Tr—-(§'“;'+ 1)[(E;_—)Z(kv ) - OIew(kv 1 <0
1 ae el e el

with sech?(z/8) = 1 for lz| < d, << 8. Here, kK z k6 and Z = z/6. By

setting ay = a, = 0, Eqs. (29) and (30) reduce to the inner equation of

Ref. 8. 1In general, A is independent of z and the solution is
W%z2) = ¢ cosh(AZ) (31)

where C is an integration constant and the symmetric solution has been

chosen.

In the intermediate region 1I, the eigenvalue equation takes on the

form
292§ e gt (38 [(gr( ) - i)
dz2 L a2 MUY Vi
14

@

-

e




2T -2 -
_ el [(EL)Z(EVNJ) - °e"(k3 Jsinh 2(z)}

T et i

1 el
x sech? (?)&. (32)

It is easy to see that the inner ion orbit contribution dominates the small

gyroradius electron contribution in this region.

In the exterior region [z| > d;, the orbit of both species are mainly

of the small gyroradius drifting type and the eigenvalue equation takes on

the form
- T
4%y | Tc-z-Zsechz(?)“+2—H-—“’— L) - T
— ¥ )2 ) - e W(—)
dz2 ! ) {Tl [(kvill (k‘.'in 17%kvy ]
T . )
2 [((2)z(—) - o W) ]}sinh2(Z) sech2(D)y. (33)
1 el el el

Asymptotically, where the VB contribution vanishes due to near uniformity

of the equilibrium magnetic field, the solution of the above equation is20

9_(2) = D(1 + = tanhl|z| exp(KIZl), (34)
k

where the even solution is chosen and D is an integration constant. As

required, the first derivative is proportional to exp(-kl|z|) and vanishes

it B e e o S S

as |z| +» =

If we set @ *a, = 0 in Eq. (30) and match the inner and asymptotic

solutions ([Eqs. (31) and (34)] at z = dg, then the isotropic results of
Ref. 8 are recovered. Equating the logarithmic derivatives of Eqs. (31) ]

and (34) at z = dg, we obtain the linear dispersion relation

i R TRV o E R

= = -1 = -l 25 = -1 = -1 -
A tanh(Ad ) = (1 +k “taoh & )[k “sech’d -k (1 +k ‘tamhd)],

(335)

where A 18 given by Eq. (30) and Ee s de/G. This 1is equivalent to the
series representation in terms of generalized Legendre functions given in
Ref. 8. Neglecting terms of order Ee << 1, the right hand side can be

simplified and we have approximately
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A tanh (Ad)) = = - k. (36)

x| f-

Using the small-argument expansion of Z function in Eq. (32), we find
(AEe) << 1 for the low-frequency perturbations. Then, keeping only the
leading terms in Eq. (36), we find that the instability is primarily due to

the resonant electrons and

a T
, D S (_2)3/2 1 (1+ __1.)(1 _— (37)
kvey 6 VI Te'%

which is identical to the isotropic result®. It shows that (y/kve") K1
scales as (ae/6)3/2 and that y > O (unstable) for k < 1 and y < O (stable)
for k > 1. By setting y = 0 and neglecting terms of order 3;, we find

the marginal condition

and the marginal wavenumber I; = 1, recovering the previous resultl’z.

For the anisotropic case, the approximate dispersion relation is still
given by Eq. (36) with °j
(30), the electron anisotropy effects are large because of the small
gyroradius (af/a: « milme, 62/a§ > 1), As a result, it is likely that

# 0 in A [Eq. (30)]. As we can see from Eq.

nonlinear effects become important for electrons on a time scale comparable
1. This makes the present analysis unsuitable except for very
¢ 1] < ae/6. Thus,

in the remainder of this paper, we will primarily consider the case with

to  w,
small degrees of electron anisotropy, viz., |TeL/Te

anisotropic ions and isotropic electrons. Then, keeping only the leading

terms, we have

T T m
-2 > 114-1 11,-1
(A,)% 2 2/a() (1 + ) () + 20, (LTI 2, a8
e el el el e i

where a, = (1~ Til/Til)' In marginal state, y = O and

T m

- 12 i1\-1,§ e
(Ade ) - 261(1 +—~T ) (_8—) r .

el e i

For systems in which (aels) and (me/mi) are comparable such as the

18




magnetotail, (AE;)z << 1. Then, the marginal wavenumber E; is given by

} T m
: 1 = 11\=1, e\ 8§ 3/2
: — -k, = V2 ai(l + .-r—) (;—)(a—) . (39)
ko el
Using Eqs. (38) and (39) in Eq. (36) and keeping only the leading terms, we
find
a T T m
2 - L (@20 e A A -0 - e 1+ FY T ERIEYA).
Wer /2w 8 Ter " % ! T i S

el 1 e (40) ;

This 1is the approximate anisotropic dispersion relation obtained by
matching the inner and asymptotic solutions at z = d,. From Eq. (40), we

find that the normalized growth rate y/wci has a maximum at

A———— D . e -

- 1.1 —
k z=-5(=—-k),
c 2 ‘= o
k,

and {
[

a m T

=2
o (5-)5/2(;:-)(1+T:-f)(1+kc). (1)

Equation (36) 1s obtained to show the basic properties of the
isotropic and anisotropic dispersion relations. One noteworthy property of
this equation is that A is either purely real or purely imaginary. Using
small-argument expansion of Z and W functions, it is easy to see that u is ]
nearly purely imaginary for the low-frequency perturbations being |
considered, as we assumed 1in the preceding discussion of approximate
solutions. 1In the remainder of the paper, we speclalize to the case of
imaginary frequency with o = iy so that y>0 corresponds to
instabilicy. The transcendental equation (36) has also been solved
numerically to obtain the dispersion relation in detail. Figures 3 and 4
show the growth rate y normalized to the asymptotic 1fon cyclotron
frequency w,4 versus the normalized k = k6. The dispersion curves are
shown for several values of T11/T1| and two values of (u1/6). 0.03 and

Lws e
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Fig. 3 Normalized growth rate (Y/mci) versus k§ for 31/6 = 0.03 using

the two-region approximation [Eq. (37)].
(a) 0.9, (b) 1.0, (¢) 1.1 and (d) 1l.15. (T /T
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Fig. 4 Normalized growth rate (Y/wci) versus k§ for 31/6 = 0.05 using
Eq. (37). The value of T, /T, 1is (a) 0.9, (b) 1.0, (¢) l.1 and

i1 "1y
(d) 1.15. (TeL/Tel = 1).




0.05. In particular, the value 31/6 = 0.03 roughly corresponds to the
quiescent magnetotail parameters. In addition, we have used Til/Tel = 2.
In this case, aeld =~ 5 x 10—4.
The curve b in each figure corresponds to the isotropic result8 with
the marginal wavenumber k§ = 1 independently of (ai/d). Consistent with
the previous conclusions13, we find that temperature anisotropy
with Til/Tin > 1 1is destabilizing while anisotropy with Tii/Tin <1is
stabilizing. Here, j& is parallel to Eo so that the case with the greater
temperature perpendicular to k is more unstable. These figures also show
that Eq. (39) describes the stability boundary accurately. For example,
for Til/Tin = 1.1 and ai/G = 0.03, we have E; = 2.67. For ai/d = 0.05, we
have ko = 1,68, in agreement with these figures. In addition, Eq. (40)
is a good approximation for all the curves shown in these figures. In
comparing Figs. 3 and 4, note that the two values of 31/6 correspond to

different values of &§ and w_, so that y and k are normalized to different

scales [see Eqs. (14), (17) gid (18)]. The curves are not completed for

k§ = 0 because the theory breaks down as k + 0. Comparing curves a, c¢ and
d with curve b in each of Figs. 3 and 4, we see that the effect of
anisotropy 1is substantial. This is expected because the anisotropy term,
the third term in Eq. (8), 1s greater than the isotropic term by a factor
of (kv,, 12
used an energy method to show that the mode treated here is completely

stabilized for

/w) >> 1. 1In thic regard, we point out that Laval and Pellat

Tel ae
= <1-3-. (42)
el

For the parameter used in Fig. 3, the right hand side is approximately
0.9995. Using this value of electron temperature anisotropy in Eq. (37),
we find that the mode is in fact completely stabilized. With electron
anisotropy, the square brackets in Eq. (40) would contain another term
identical to the second term except for the replacement e - i and

me/m1 > 1. [See the discussion preceding Eq. (38)]. The reason for the
extremely sensitive dependence on the electron anisotropy described above

is that the electron term without the small mass ratio enhances the

anisotropy effects discussed above. As a general remark, we note
that y/uc1 is typically of the order of 1074, 1n addition, y/kvjl is also
20
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of the order of 10 ' for the unstable parameter regimes for both species.

Thus, the low frequency approximation used to derive Eq. (8) is justified a

posteriori.

So far, we have examined anisotropic tearing~mode properties using the
two-region matching method following a number of previous works. However,
examination of Eq. (32) shows that, in the intermediate region, it is the
ion orbits that dominate. Furthermore, because d; >> d,, the effect of
these 1ions is expected to be large. In order to study the anisotropic
properties including the intermediate region, we have numerically
integrated Eqs. (32) and (33) in regions II and III. The physically
acceptable solution must have the asymptotic behavior given by Eq. (34) and
the logarithmic derivative must be continuous at z = di and z = de. At z =
da,
The matching condition then gives the 1linear anisotropic dispersion

the derivative is matched to that of the analytic solution, Eq. (31).

relation. The results are plotted in Figs. 5 and 6 for several values
of Til/Tin and for two values of ai/s, 0.03 and 0.05. Here, the electrons
are isotropic.

Comparing Figs. (3) with (5) and (4) with (6), we see that inclusion
of the ion orbits in the intermediate region modifies the growth rate and
the stability boundary significantly. In general, the anisotropy effects
are further enhanced by the inclusion of the intermediate region (region
II). That 1is, for Til/Tiu < 1, the mode is more strongly stabilized with
the intermediate region than without i{t. For Til/Tiu > 1, the
instability 1is more strongly enhanced with the intermediate region than
without it. However, the isotropic dispersion curves obtained using the
“"three-region” matching method are nearly identical to the corresponding
ones obtained using the two-region approach. The absolute value of (Y/wci)
of curve b in Fig. 3 1is greater than that of curve b in Fig. 5 by
approximately 3% to 4% (ai/s = 0.03). The absolute value of (Y/wci) of
curve b in Fig. 4 1is also greater than that of curve b in Fig. 6 by similar
amounts (31/6 = 0.05). This agreement is nontrivial since Eq. (32) shows
that the dominant ion orbits in the intermediate region modifies the
eigenvalue equation significantly and indicates that the isoEropic
dispersion relation 1is 1indeed determined primarily by the resonant
electrons in the inner region lz|] < d,. The above behavior can be

21
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Normalized growth rate (Y/“’ci) versus k§ for ai/S = 0,03

including the intermediate ion region. The value of Til/Til is
(a) 0.9, (b) 1.0, (¢) 1.05, (d) 1.1 and (e) 1l.15. (TeL/Teu = 1).




understood from Eqs. (6) or (8) by noting that iquy is the time-~integrated
Lorentz force in the x-direction causing the particles to bunch. Since the
ion orbits are larger than the electron orbits by approximately di/de= 4,

the accumulated influence 1is also increased. It is evident that the -

Lorentz force term is zero in the isotropic case. It is of interest to

note that the force responsible for the anisotropic effects is similar to
that in the mirror 1nstability20. However, unlike the mirror instability,
there is no threshold value of TiL/Tiu that is required for the onset of

the anisotropic effects.

Figures 5 and 6 show that for Til/T > 1 the maximum growth rate is

, in
) enhanced by one order of magnitude or more from the isotropic case and that

<1, the instability is

the marginal wavenumber is increased. For Til/Tin

essentially stabilized. Note that, as before, (Y/wci) is typically of the

order of 10—4 so that the low frequency approximation is justified. The
results are shown for TiL/Tin up to 1.15. For higher (TiL/Tin > 1.3)
degrees of anisotropy, the increasing value of (Y/wci) would render the low
frequency and constant-y approximations invalid. The dashed line (e) in
Fig. 6 shows the dispersion curve for Til/Tiu = 1.1 with the VB
contribution neglected. We see that the qualitative behavior 1is not
significantly changed and that the VB drift has the opposite, albeit small,

effect from the axis-crossing orbits. This is easy to underst snd siwstz the

guiding center of a drifting particle is opposite tc the mean drift
velocity of the plasma layer [Eq. (25)].

Figure 7 shows the maximum growth rate (Y/”ci)max as a function of
temperature anisotropy (TiL/Tin)' In Fig. 8, we have plotted the efgen-

function y(z) for |z| > d, for two values of T /T Both curves

11" 4’
correspond to the respective maximum growth rates (Y/wci)max' The matching
' surfaces at |z| = de and [z| = d; are also shown. We see that the

constant~y approximation 1is reasonable for the values of Til/Til used

here. However, for TillTiu 2 1.3, the variation in y within the ion layer

becomes substantially greater.
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Normalized growth rate (Y/wci) versus k§ for 31/6 = 0.05
including the intermediate ion region. The value of 'r“/'r“ is
(a) 0.9, (b) 1.0, (c) 1.05, (d) 1.1, (e) 1.1 with VB neglected

and (£) 1.15. (T, /T, =~ 1).
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IV. SUMMARY

In this paper, we have investigated the collisionless tearing-mode
properties of an anisotropic (Tl # Tl) neutral sheet. Both 1ions and
electrons are described by Vlasov distribution functions. Using simplified
particle orbits and constant-y approximation, the perturbed distribution
function is evaluated for low frequency perturbations (y/mci << 1) with
ko Eo' The first-order current densities are explicitly found [Egs.
(22), (23), (27) and (28)] and eigenvalue equation is obtained for the
three reglons [Fig. 2 and Eqs. (29), (32) and (33)]. The equation is solved
using both analytic approximations and numerical methods to obtain the
linear dispersion relation (Figs. 3, 4, 5 and 6) and the eigenmode
structure (Fig. 8). First, by neglecting the ion intermediate region
(region 1I), the conventional two-region matching method is used to find
the approximate anisotropic dispersion relation [Eq. (40) and Figs. 3 and
4] as well as other dispersion properties [Eqs. (39) and (41)]. Then, the
full eigenvalue equation is numerically integrated in regions II and III.
The three-region matching condition then gives rise to the anisotropic
dispersion relation illustrated in Figs. 5 and 6 for a number of parameter
values. It 1is shown that temperature anisotropy with TiL/Tin >1
enhances the growth rate by as much as an order of magnitude or more while

anisotropy with T, /T <1 strongly stabilizes the mode. This 1is

S § |
consistent with previous results based on energy principlelz and marginal
stability13 calculations. It is also found that the conventional approach

of matching the inner and outer solutions at the electron inner region (|z!
< de) is not adequate in the anisotropic case. An intermediate region

(4 < lzl < d;) 1is identified in which the axis-crossing ion orbits are
dominant. It is the ions in this region that account for the substantial
differences as exhibited by Figs. 3, 4, 5 and 6. The use of simplified
orbits also allows evaluation of the effects of different orbits
explicitly. In particular, it is found that the inner orbits and outer
»rbits (the VB drift orbits) have the opposite effects on the growth

rate: where the inner orbits are destabilizing, the outer orbits are

stabilizing and vice versa in the anisotropic case.

g
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A physical system for which the present analysis may be applicable is
the earth”s magnetotail. The previous works on the tearing-mode stability
of such a system have studied isotropic neutral sheets (see, for example,
Refs. 8, 10 and 11). 1In light of the fact that the magnetotail is highly
collisionless, it 1s reasonable to expect the temperature distribution to
be generally - anisotropic. Qur present results suggest that the linear
tearing~mode properties of the magnetotail and similar physical systems are
dominated by the anisotropic tearing-mode. In fact, the k 1 Eo mode can
grow significantly faster than previously predicted 1if temperature
anisotropy 1is present (ai > a1/6). Thus, the particle temperature
distribution 1is a critically important quantity for understanding the

linear tearing-mode stability properties.

The present analysis utilized simple approximate orbits in evaluating
the orbit integrals. In the 1isotropic case, the two-region approach8
yielded results in agreement with numerical tesults,h indicating that the
stability properties are not critically dependent on the precise orbits.
In the anisotropic case, however, the large ion orbits are important so
that a more accurate calculation of the orbit integrals is desirable. In
the present analysis, the orbits that are neglected are mainly those of
particles with energy substantially greater than the typical velocities,
constituting a relatively small fraction of the total particles. In
conjunction with the fact that the low frequency and constant-y approxima-
tions are well satisfied by the results, we expect the present results to
be a good first approximation for understanding the essential physics of

the collisionless anisotropic tearing-mode properties.
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